There has been a huge spike in the usage of social media platforms during the COVID-19 lockdowns. These lockdown periods have resulted in a set of new cybercrimes, thereby allowing attackers to victimise social media users with a range of threats. This paper performs a large-scale study to investigate the impact of a pandemic and the lockdown periods on the security and privacy of social media users. We analyse 10.6 Million COVID-related tweets from 533 days of data crawling and investigate users' security and privacy behaviour in three different periods (i.e., before, during, and after the lockdown). Our study shows that users unintentionally share more personal identifiable information when writing about the pandemic situation (e.g., sharing nearby coronavirus testing locations) in their tweets. The privacy risk reaches 100% if a user posts three or more sensitive tweets about the pandemic. We investigate the number of suspicious domains shared on social media during different phases of the pandemic. Our analysis reveals an increase in the number of suspicious domains during the lockdown compared to other lockdown phases. We observe that IT, Search Engines, and Businesses are the top three categories that contain suspicious domains. Our analysis reveals that adversaries' strategies to instigate malicious activities change with the country's pandemic situation.


翻译:在COVID-19封锁期间,社交媒体平台的使用量急剧增加。这些封锁期间导致了一系列新的网络犯罪,从而使攻击者能够利用各种威胁对社交媒体用户进行攻击。本文进行了大规模的研究,以调查流行病和封锁期对社交媒体用户的安全和隐私的影响。我们分析了1060万条来自533天数据爬取的COVID相关推文,并研究了三个不同时期(即封锁前、期间和后)的用户安全和隐私行为。我们的研究表明,用户在描述疫情情况时(例如分享附近的冠状病毒测试地点)不经意间共享了更多的个人身份信息。如果用户发布三个或更多关于疫情的敏感推文,则隐私风险将达到100%。我们调查了社交媒体上在不同阶段共享的可疑域名数量。我们的分析显示,封锁期间可疑域名的数量比其他封锁阶段增加。我们观察到IT、搜索引擎和企业品类是包含可疑域名的前三类。我们的分析显示,对手的策略随着国家的疫情情况而变化,以唆使恶意活动。

0
下载
关闭预览

相关内容

安全是在人类生产过程中,将系统的运行状态对人类的生命、财产、环境可能产生的损害控制在人类能接受水平以下的状态。 隐私是一种与公共利益、群体利益无关,当事人不愿他人知道或他人不便知道的个人信息,(只能公开于有保密义务的人)当事人不愿他人干涉或他人不便干涉的个人私事,以及当事人不愿他人侵入或他人不便侵入的个人领域。隐私是个人的自然权利。
战争武装冲突时期的隐私权和数据保护,333页pdf
专知会员服务
16+阅读 · 2022年6月24日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员