Variable screening methods have been shown to be effective in dimension reduction under the ultra-high dimensional setting. Most existing screening methods are designed to rank the predictors according to their individual contributions to the response. As a result, variables that are marginally independent but jointly dependent with the response could be missed. In this work, we propose a new framework for variable screening, Random Subspace Ensemble (RaSE), which works by evaluating the quality of random subspaces that may cover multiple predictors. This new screening framework can be naturally combined with any subspace evaluation criterion, which leads to an array of screening methods. The framework is capable to identify signals with no marginal effect or with high-order interaction effects. It is shown to enjoy the sure screening property and rank consistency. We also develop an iterative version of RaSE screening with theoretical support. Extensive simulation studies and real-data analysis show the effectiveness of the new screening framework.
翻译:在超高维度设置下,变量筛选方法已证明在降低维度方面是有效的,大多数现有筛选方法的设计是为了根据预测者对响应的个别贡献对预测者进行排位。因此,可能忽略了与响应互为依存的略有独立的变量。在这项工作中,我们提出了一个新的变量筛选框架,即随机子空间集合(RASE),通过评估可能包含多个预测者的随机子空间的质量来发挥作用。这个新的筛选框架可以自然地与任何子空间评估标准结合起来,从而产生一系列筛选方法。这个框架能够识别无边际效应或具有高分级交互效应的信号。它显示它享有可靠的筛选属性和等级一致性。我们还在理论支持下开发了一台迭代版的RASE筛选。广泛的模拟研究和真实数据分析显示了新的筛选框架的有效性。