We investigate how effective an attacker can be when it only learns from its victim's actions, without access to the victim's reward. In this work, we are motivated by the scenario where the attacker wants to behave strategically when the victim's motivations are unknown. We argue that one heuristic approach an attacker can use is to maximize the entropy of the victim's policy. The policy is generally not obfuscated, which implies it may be extracted simply by passively observing the victim. We provide such a strategy in the form of a reward-free exploration algorithm that maximizes the attacker's entropy during the exploration phase, and then maximizes the victim's empirical entropy during the planning phase. In our experiments, the victim agents are subverted through policy entropy maximization, implying an attacker might not need access to the victim's reward to succeed. Hence, reward-free attacks, which are based only on observing behavior, show the feasibility of an attacker to act strategically without knowledge of the victim's motives even if the victim's reward information is protected.


翻译:我们调查攻击者只有从受害者的行为中学习,而没有获得受害者奖赏,攻击者才会有多么有效。在这项工作中,我们受到攻击者想在受害者动机不明的情况下采取战略行动的设想的激励。我们争辩说,攻击者可以使用一种超自然的方法来最大限度地扩大受害者政策的诱惑力。一般而言,该政策并不模糊,这意味着它可能只是通过被动观察受害者而获得。我们以无报酬的探索算法的形式提供这样的战略,在探索阶段使攻击者的昆虫最大化,然后在规划阶段使受害者经验性昆虫最大化。在我们的实验中,受害者代理人通过政策催眠最大化被颠覆,意味着攻击者可能不需要获得受害者奖赏来取得成功。因此,仅仅以观察行为为基础的无报酬攻击者在不了解受害者动机的情况下采取行动战略的可行性,即使受害者的报酬信息受到保护。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员