Localization in aerial imagery-based maps offers many advantages, such as global consistency, geo-referenced maps, and the availability of publicly accessible data. However, the landmarks that can be observed from both aerial imagery and on-board sensors is limited. This leads to ambiguities or aliasing during the data association. Building upon a highly informative representation (that allows efficient data association), this paper presents a complete pipeline for resolving these ambiguities. Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements. Additionally, to smooth the final result, we adjust the information matrix for the associated data as a function of the relative transform produced by the data association process. We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany. We compare state-of-the-art outlier mitigation methods with our self-tuning approach, demonstrating a considerable improvement, especially for outer-urban scenarios.
翻译:空中图像地图的本地化提供了许多优势,如全球一致性、地理参照地图和可公开获取的数据的可得性等。然而,从航空图像和机载传感器中可以观察到的地标有限。这导致数据协会期间的含糊不清或别名。在高度信息化的表述(允许有效的数据协会)的基础上,本文件为解决这些模糊之处提供了一个完整的管道。其核心是一个强大的自我调控数据协会,根据测量结果的酶谱对搜索区域进行调整。此外,为了顺利取得最终结果,我们调整相关数据的信息矩阵,作为数据联系进程产生的相对变化的函数。我们评估了我们从德国卡尔斯鲁厄市周围城市和农村情景中得出的真实数据的方法。我们比较了最先进的减缓方法与我们的自我调控方法,显示了相当大的改进,特别是在外部城市情景方面。