Algorithmic stablecoins (AS) are one special type of stablecoins that are not backed by any asset (equiv. without collateral). They stand to revolutionize the way a sovereign fiat operates. As implemented, these coins are poorly stabilized in most cases, easily deviating from the price target or even falling into a catastrophic collapse (a.k.a. Death spiral), and are as a result dismissed as a Ponzi scheme. However, is this the whole picture? In this paper, we try to reveal the truth and clarify such a deceptive concept. We find that Ponzi is basically a financial protocol that pays existing investors with funds collected from new ones. Running a Ponzi, however, does not necessarily imply that any participant is in any sense losing out, as long as the game can be perpetually rolled over. Economists call such realization as a \textit{rational Ponzi game}. We thereby propose a rational model in the context of AS and draw its holding conditions. We apply the model to examine: \textit{whether or not the algorithmic stablecoin is a rational Ponzi game.} Accordingly, we discuss two types of algorithmic stablecoins (\text{Rebase} \& \text{Seigniorage shares}) and dig into the historical market performance of two impactful projects (\text{Ampleforth} \& \text{TerraUSD}, respectively) to demonstrate the effectiveness of our model.
翻译:运算稳定币( AS) 是非任何资产支持的一种特殊类型的稳定币 。 我们发现庞氏基本上是一种金融协议, 用从新资产中收集的资金支付现有投资者。 但是, 运行庞氏并不表示任何参与者在任何意义上都会失去, 只要游戏可以永久地滚动, 这些硬币很容易地偏离价格目标, 甚至跌入灾难性崩溃( a.k.a. 死亡螺旋), 并因此被作为庞氏游戏而被淘汰。 但是, 这是否是整幅图? 我们试图在本文中揭示真相, 并澄清这样一个欺骗性概念。 我们用这个模型来考察:\ text{ 是否使用从新资产中收集的资金支付现有投资者的金融协议。 然而, 运行庞氏不一定意味着任何参与者在任何意义上都会输掉, 只要游戏可以永久地滚动。 经济学家将这样的实现称为 Textit( ligialation) 庞氏游戏 。 我们因此在模型中提出一个合理的模型, 并绘制其持有条件 。 我们用这个模型来考察:\ text { max maxincoincin custivin is reculate bour acrequlate) aqolticrequtusquew) aqutusqual) aquolusqusqusqusqusqualdalbuslusqualbuslus。