Mobile embedded devices of the Internet of Things (IoT) face tight resource constraints and uncertain environments, including energy scarcity and unstable connectivity. This aggravates debugging, optimization, monitoring, etc.; for which logging information must be accessible throughout all phases of development and product life cycles. This work compares approaches for transmitting logs with regard to application requirements (e.g., bandwidth), resource consumption (e.g., memory), operating constraints (e.g., power supply), and the medium (e.g., UART, WiFi). A qualitative comparison suggests that the adequacy of approaches depends on the concrete application and the phase in the life cycle. We report from our case study, where the embedded mobile device is represented by a self-driving slot car (Carrera D132). With this target device, failure logs, new firmware, and monitoring data need to be exchanged. The gathered experiences support our qualitative discussion: Wireless techniques can suit the needs of many phases in the life cycle but it is particularly evident that energy consumption is crucial. With a loaded wireless stack and while transmitting logs, the car's operating voltage drop within a \~ 20 ms power interruption is \~ 1.6 times higher. This limits communication flexibility significantly.
翻译:移动嵌入的物联网设备(IoT)面临资源紧缺和不确定的环境,包括能源短缺和不稳定的连通性。这加剧了调试、优化、监测等,因此,在开发和产品寿命周期的所有阶段都必须提供记录信息。这项工作比较了传输记录在应用要求(例如带宽)、资源消耗(例如记忆)、操作限制(例如电力供应)和媒介(例如电力供应)方面的做法。定性比较表明,方法的适足性取决于具体应用和生命周期的阶段。我们从案例研究中报告,在案例研究中,嵌入的移动设备由自驾驶槽车(Carrera D132)作为代表。需要用这个目标设备、故障日志、新的固态软件和监测数据进行交流。所收集的经验支持了我们的质量讨论:无线技术可以满足生命周期中许多阶段的需要,但特别明显的是,能源消耗是关键因素。装满了无线堆和传送的日志时,汽车运行的电流灵活性在1.6 秒内大幅下降。