Receiver operating characteristic (ROC) curve is an informative tool in binary classification and Area Under ROC Curve (AUC) is a popular metric for reporting performance of binary classifiers. In this paper, first we present a comprehensive review of ROC curve and AUC metric. Next, we propose a modified version of AUC that takes confidence of the model into account and at the same time, incorporates AUC into Binary Cross Entropy (BCE) loss used for training a Convolutional neural Network for classification tasks. We demonstrate this on three datasets: MNIST, prostate MRI, and brain MRI. Furthermore, we have published GenuineAI, a new python library, which provides the functions for conventional AUC and the proposed modified AUC along with metrics including sensitivity, specificity, recall, precision, and F1 for each point of the ROC curve.
翻译:接收器操作特征(ROC)曲线是二进制分类中的一种信息工具,在ROC曲线下的区域是报告二进制分类者业绩的流行度量标准;在本文中,我们首先对ROC曲线和AUC测量值进行全面审查;然后,我们提出一个AUC的修改版本,其中考虑到对模型的信心,同时将AUC纳入二进制跨肠系统损失,用于培训用于分类任务的神经神经网络的二进制损失;我们在三个数据集上展示了这一点:MNIST、Prostate MRI和大脑MRI。此外,我们出版了GUIAIA,这是一个新的皮延图书馆,它为常规ACU和拟议的修改的AUC提供了功能,同时为ROC曲线的每个点提供了敏感度、特性、回溯、精确度和F1等指标。