Evolutionary clustering algorithms have considered as the most popular and widely used evolutionary algorithms for minimising optimisation and practical problems in nearly all fields. In this thesis, a new evolutionary clustering algorithm star (ECA*) is proposed. Additionally, a number of experiments were conducted to evaluate ECA* against five state-of-the-art approaches. For this, 32 heterogeneous and multi-featured datasets were used to examine their performance using internal and external clustering measures, and to measure the sensitivity of their performance towards dataset features in the form of operational framework. The results indicate that ECA* overcomes its competitive techniques in terms of the ability to find the right clusters. Based on its superior performance, exploiting and adapting ECA* on the ontology learning had a vital possibility. In the process of deriving concept hierarchies from corpora, generating formal context may lead to a time-consuming process. Therefore, formal context size reduction results in removing uninterested and erroneous pairs, taking less time to extract the concept lattice and concept hierarchies accordingly. In this premise, this work aims to propose a framework to reduce the ambiguity of the formal context of the existing framework using an adaptive version of ECA*. In turn, an experiment was conducted by applying 385 sample corpora from Wikipedia on the two frameworks to examine the reduction of formal context size, which leads to yield concept lattice and concept hierarchy. The resulting lattice of formal context was evaluated to the original one using concept lattice-invariants. Accordingly, the homomorphic between the two lattices preserves the quality of resulting concept hierarchies by 89% in contrast to the basic ones, and the reduced concept lattice inherits the structural relation of the original one.
翻译:进化群集算法被认为是在几乎所有领域最受欢迎和最广泛使用的尽量减少优化和实际问题的进化算法。在这个理论中,提出了一个新的进化群集算法星(ECA* ) 。此外,还进行了一些实验,对照五种最先进的方法对ECA* 进行了评估。为此,使用内部和外部群集测量法来检查其业绩,并测量其业绩对业务框架形式中的数据集的敏感性。结果显示ECA* 在寻找正确群集的能力方面克服了竞争技巧。基于其高级性能,利用和调整ECA* 的内层算法数据星(ECA* ) 具有重要的可能性。在将Corboraora的概念分级的过程中,生成了正式背景,可能会导致一个耗时性的过程。因此,正式背景规模缩小了不感兴趣和错误的一对一,从而减少了原始概念和概念之间的时间关系。在这个前提下,这项工作旨在提出一个框架来降低内部结构结构结构结构结构的模糊性, 并且通过一个结构结构框架来降低内部结构结构结构结构结构结构结构结构的二度, 将一个结构结构结构结构的变为一级结构结构结构结构结构结构结构结构框架的变为结构结构结构结构结构结构结构结构结构结构框架。 。在采用一个结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的变化结构结构结构结构的变化结构的变为结构结构结构的变为结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的变为结构的变为结构结构结构结构结构结构结构结构结构结构结构结构结构结构的变为结构结构结构结构结构结构结构结构结构的变。 。 。 。,,通过一个结构变为结构的变为结构的变为结构的变为结构结构结构的变为结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的变为结构结构结构结构结构结构结构结构结构的变为结构结构结构结构的变变变变变为结构的变变变为结构结构结构结构结构结构的变为结构的变变变变为结构结构结构的变变变变变变变的变的变的变的变的变的变的变的变的变的变的