The variational lower bound (a.k.a. ELBO or free energy) is the central objective for many established as well as many novel algorithms for unsupervised learning. Learning algorithms change model parameters such that the variational lower bound increases. Learning usually proceeds until parameters have converged to values close to a stationary point of the learning dynamics. In this purely theoretical contribution, we show that (for a very large class of generative models) the variational lower bound is at all stationary points of learning equal to a sum of entropies. For standard machine learning models with one set of latents and one set observed variables, the sum consists of three entropies: (A) the (average) entropy of the variational distributions, (B) the negative entropy of the model's prior distribution, and (C) the (expected) negative entropy of the observable distributions. The obtained result applies under realistic conditions including: finite numbers of data points, at any stationary points (including saddle points) and for any family of (well behaved) variational distributions. The class of generative models for which we show the equality to entropy sums contains many well-known generative models. As concrete examples we discuss Sigmoid Belief Networks, probabilistic PCA and (Gaussian and non-Gaussian) mixture models. The prerequisites we use to show equality to entropy sums are relatively mild. Concretely, the distributions of a given generative model have to be of the exponential family (with constant base measure), and the model has to satisfy a parameterization criterion (which is usually fulfilled). Proving the equality of the ELBO to entropy sums at stationary points (under the stated conditions) is the main contribution of this work.


翻译:变式下限( a. k. a. a. ELBO 或 免费能量) 是许多既定的以及许多未监督的学习的新奇算法的中心目标。 学习算法会改变模型参数, 使变式下限增加。 学习通常会持续到参数趋近于学习动态固定点的值。 在这个纯理论贡献中, 我们显示变式下限( 对于一个非常庞大的基因化模型来说) 变式下限是在所有固定的学习点, 等同于一个整数。 对于具有一组潜值和一组观察到的变量的标准机器学习模型来说, 总数由三种变式变式模型的模型参数组成:( A) ( 平均) 变式分布, ( B) 模型先前分布的负式, ( C) (预期) 可见分布的负式负式。 所获得的结果适用于现实条件下, 包括: 模型的直径等数, 任何固定点( 包括齿点) 和任何( 行为良好的) 变式分配模式, 等数, 数由三个变式的变式模型组成。 相对的变式的变式模型的基数组成基数( 通常的基数) 通常的基数 显示的变数 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月10日
Arxiv
13+阅读 · 2022年10月20日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员