The recent abundance of conversational data on the Web and elsewhere calls for effective NLP systems for dialog understanding. Complete utterance-level understanding often requires context understanding, defined by nearby utterances. In recent years, a number of approaches have been proposed for various utterance-level dialogue understanding tasks. Most of these approaches account for the context for effective understanding. In this paper, we explore and quantify the role of context for different aspects of a dialogue, namely emotion, intent, and dialogue act identification, using state-of-the-art dialog understanding methods as baselines. Specifically, we employ various perturbations to distort the context of a given utterance and study its impact on the different tasks and baselines. This provides us with insights into the fundamental contextual controlling factors of different aspects of a dialogue. Such insights can inspire more effective dialogue understanding models, and provide support for future text generation approaches. The implementation pertaining to this work is available at https://github.com/declare-lab/dialogue-understanding.


翻译:网上和其他地方最近有大量的谈话数据要求有效的NLP对话理解系统。完全的讲解往往要求理解背景,由附近的语句界定。近年来,为各种讲解的对话理解任务提出了若干办法。这些办法大多涉及有效理解的背景。在本文中,我们探讨并量化对话各个方面的背景作用,即情感、意图和对话行为识别,使用最先进的对话理解方法作为基线。具体地说,我们利用各种干扰来歪曲特定语句的背景,并研究其对不同任务和基线的影响。这为我们提供了对对话不同方面的基本背景控制因素的深入了解。这些深入了解可以激发更有效的对话理解模式,并为未来的文本生成方法提供支持。与这项工作有关的实施情况见https://github.com/declare-lab/dialogue-underaty。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员