The recent abundance of conversational data on the Web and elsewhere calls for effective NLP systems for dialog understanding. Complete utterance-level understanding often requires context understanding, defined by nearby utterances. In recent years, a number of approaches have been proposed for various utterance-level dialogue understanding tasks. Most of these approaches account for the context for effective understanding. In this paper, we explore and quantify the role of context for different aspects of a dialogue, namely emotion, intent, and dialogue act identification, using state-of-the-art dialog understanding methods as baselines. Specifically, we employ various perturbations to distort the context of a given utterance and study its impact on the different tasks and baselines. This provides us with insights into the fundamental contextual controlling factors of different aspects of a dialogue. Such insights can inspire more effective dialogue understanding models, and provide support for future text generation approaches. The implementation pertaining to this work is available at https://github.com/declare-lab/dialogue-understanding.
翻译:网上和其他地方最近有大量的谈话数据要求有效的NLP对话理解系统。完全的讲解往往要求理解背景,由附近的语句界定。近年来,为各种讲解的对话理解任务提出了若干办法。这些办法大多涉及有效理解的背景。在本文中,我们探讨并量化对话各个方面的背景作用,即情感、意图和对话行为识别,使用最先进的对话理解方法作为基线。具体地说,我们利用各种干扰来歪曲特定语句的背景,并研究其对不同任务和基线的影响。这为我们提供了对对话不同方面的基本背景控制因素的深入了解。这些深入了解可以激发更有效的对话理解模式,并为未来的文本生成方法提供支持。与这项工作有关的实施情况见https://github.com/declare-lab/dialogue-underaty。