Real-time crash detection is essential for developing proactive safety management strategy and enhancing overall traffic efficiency. To address the limitations associated with trajectory acquisition and vehicle tracking, road segment maps recording the individual-level traffic dynamic data were directly served in crash detection. A novel two-stage trajectory-free crash detection framework, was present to generate the rational future road segment map and identify crashes. The first-stage diffusion-based segment map generation model, Mapfusion, conducts a noisy-to-normal process that progressively adds noise to the road segment map until the map is corrupted to pure Gaussian noise. The denoising process is guided by sequential embedding components capturing the temporal dynamics of segment map sequences. Furthermore, the generation model is designed to incorporate background context through ControlNet to enhance generation control. Crash detection is achieved by comparing the monitored segment map with the generations from diffusion model in second stage. Trained on non-crash vehicle motion data, Mapfusion successfully generates realistic road segment evolution maps based on learned motion patterns and remains robust across different sampling intervals. Experiments on real-world crashes indicate the effectiveness of the proposed two-stage method in accurately detecting crashes.


翻译:实时碰撞检测对于制定主动安全管理策略和提升整体交通效率至关重要。为克服轨迹获取与车辆跟踪的局限性,本研究直接利用记录个体级交通动态数据的路段地图进行碰撞检测。本文提出了一种新颖的两阶段无轨迹碰撞检测框架,旨在生成合理的未来路段地图并识别碰撞。第一阶段基于扩散的路段地图生成模型Mapfusion执行从噪声到正常的处理过程,逐步向路段地图添加噪声直至其退化为纯高斯噪声。去噪过程由捕获路段地图序列时间动态的序列嵌入组件引导。此外,该生成模型通过ControlNet整合背景上下文以增强生成控制。碰撞检测通过第二阶段将监测路段地图与扩散模型生成结果进行对比实现。基于非碰撞车辆运动数据训练的Mapfusion,能够根据学习到的运动模式成功生成逼真的路段演化地图,并在不同采样间隔下保持鲁棒性。真实场景碰撞实验表明,所提出的两阶段方法在精确检测碰撞方面具有显著有效性。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
46+阅读 · 11月21日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
用于识别任务的视觉 Transformer 综述
专知会员服务
75+阅读 · 2023年2月25日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
46+阅读 · 11月21日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
用于识别任务的视觉 Transformer 综述
专知会员服务
75+阅读 · 2023年2月25日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
相关资讯
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员