Vehicle-to-Everything (V2X) communication, which includes Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and Vehicle-to-Pedestrian (V2P) networks, is gaining significant attention due to the rise of connected and autonomous vehicles. V2X systems require diverse Quality of Service (QoS) provisions, with V2V communication demanding stricter latency and reliability compared to V2I. The 5G New Radio-V2X (NR-V2X) standard addresses these needs using multi-numerology Orthogonal Frequency Division Multiple Access (OFDMA), which allows for flexible allocation of radio resources. However, V2I and V2V users sharing the same radio resources leads to interference, necessitating efficient power and resource allocation. In this work, we propose a novel resource allocation and sharing algorithm for 5G-based V2X systems. Our approach first groups Resource Blocks (RBs) into Resource Chunks (RCs) and allocates them to V2I users using the Gale-Shapley stable matching algorithm. Power is then allocated to RCs to facilitate efficient resource sharing between V2I and V2V users through a bisection search method. Finally, the Gale-Shapley algorithm is used to pair V2I and V2V users, maintaining low computational complexity while ensuring high performance. Simulation results demonstrate that our proposed Gale-Shapley Resource Allocation with Gale-Shapley Sharing (GSRAGS) achieves competitive performance with lower complexity compared to existing works while effectively meeting the QoS demands of V2X communication systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员