A large number of works aim to alleviate the impact of noise due to an underlying conventional assumption of the negative role of noise. However, some existing works show that the assumption does not always hold. In this paper, we investigate how to benefit the classical models by random noise under the framework of Positive-incentive Noise (Pi-Noise). Since the ideal objective of Pi-Noise is intractable, we propose to optimize its variational bound instead, namely variational Pi-Noise (VPN). With the variational inference, a VPN generator implemented by neural networks is designed for enhancing base models and simplifying the inference of base models, without changing the architecture of base models. Benefiting from the independent design of base models and VPN generators, the VPN generator can work with most existing models. From the experiments, it is shown that the proposed VPN generator can improve the base models. It is appealing that the trained variational VPN generator prefers to blur the irrelevant ingredients in complicated images, which meets our expectations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

VPN(Virtual Private Network)虚拟专用网络,通过一个公用网络建立一条安全、稳定隧道。主要采用隧道技术、加解密技术、密钥管理技术和使用者与设备身份认证技术。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员