Generative Adversarial Networks (GANs) are an unsupervised generative model that learns data distribution through adversarial training. However, recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high dimensional parameter space and the zero gradient problem. In this work, we propose a Self Sparse Generative Adversarial Network (Self-Sparse GAN) that reduces the parameter space and alleviates the zero gradient problem. In the Self-Sparse GAN, we design a Self-Adaptive Sparse Transform Module (SASTM) comprising the sparsity decomposition and feature-map recombination, which can be applied on multi-channel feature maps to obtain sparse feature maps. The key idea of Self-Sparse GAN is to add the SASTM following every deconvolution layer in the generator, which can adaptively reduce the parameter space by utilizing the sparsity in multi-channel feature maps. We theoretically prove that the SASTM can not only reduce the search space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful features in the Batch Normalization layer and driving the weight of deconvolution layers away from being negative. The experimental results show that our method achieves the best FID scores for image generation compared with WGAN-GP on MNIST, Fashion-MNIST, CIFAR-10, STL-10, mini-ImageNet, CELEBA-HQ, and LSUN bedrooms, and the relative decrease of FID is 4.76% ~ 21.84%.
翻译:在这项工作中,我们建议建立一个自我粗化的基因反转网络(SARAN),以减少参数空间并缓解零梯度问题。在自控系统GAN中,我们设计了一个自控式的自控式螺旋变形变形模块(SASTM),该模块由广度分解和地貌图重组组成,由于高维参数空间的优化要求和零梯度问题,GAN很难进行培训。在这项工作中,我们建议建立一个自译自审的自控式自控式的自控式网络变形变形变形模块(SASTM),由高维参数空间变形变形和地貌图重组组成,可应用于多频参数参数空间图中以获得稀薄的地貌图。在发电机中,自译自译自译自译自译自译自译自审网络反向反变网络网络网络网络网络网络网络网络改造模块(SASAMTM), 通过保持低频缩缩缩缩缩阵列的搜索空间空间,在发电机的递增序段中,而降低自译自译自译缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩的图像的图像,同时显示BLMLMLMLLLOL QLMOL 。