We study limit theorems for entropic optimal transport (EOT) maps, dual potentials, and the Sinkhorn divergence. The key technical tool we use is a first and second order Hadamard differentiability analysis of EOT potentials with respect to the underlying distributions. Given the differentiability results, the functional delta method is used to obtain central limit theorems for empirical EOT potentials and maps. The second order functional delta method is leveraged to establish the limit distribution of the empirical Sinkhorn divergence under the null. Building on the latter result, we further derive the null limit distribution of the Sinkhorn independence test statistic and characterize the correct order. Since our limit theorems follow from Hadamard differentiability of the relevant maps, as a byproduct, we also obtain bootstrap consistency and asymptotic efficiency of the empirical EOT map, potentials, and Sinkhorn divergence.
翻译:我们研究的是限制对最佳热带运输地图(EOT)的理论、双重潜力和辛角差异。我们使用的关键技术工具是第一和第二顺序Hadamard对EOT在基本分布方面的潜力的不同性分析。考虑到差异性结果,使用功能三角洲方法获取实验性EOT潜力和地图的中心限制性理论。第二顺序功能三角洲方法用于确定无效下经验性Sinkhorn差异的有限分布。在后一种结果的基础上,我们进一步获得辛角独立测试统计数据的无限制分布并描述正确的顺序。由于我们的极限理论取自有关地图的哈达马德差异性,作为副产品,我们还获得了实验性EOT地图、潜力和辛角差异的划线性一致性和无损效率。