The lack of security measures among the Internet of Things (IoT) devices and their persistent online connection gives adversaries a prime opportunity to target them or even abuse them as intermediary targets in larger attacks such as distributed denial-of-service (DDoS) campaigns. In this paper, we analyze IoT malware and focus on the endpoints reachable on the public Internet, that play an essential part in the IoT malware ecosystem. Namely, we analyze endpoints acting as dropzones and their targets to gain insights into the underlying dynamics in this ecosystem, such as the affinity between the dropzones and their target IP addresses, and the different patterns among endpoints. Towards this goal, we reverse-engineer 2,423 IoT malware samples and extract strings from them to obtain IP addresses. We further gather information about these endpoints from public Internet-wide scanners, such as Shodan and Censys. For the masked IP addresses, we examine the Classless Inter-Domain Routing (CIDR) networks accumulating to more than 100 million (78.2% of total active public IPv4 addresses) endpoints. Our investigation from four different perspectives provides profound insights into the role of endpoints in IoT malware attacks, which deepens our understanding of IoT malware ecosystems and can assist future defenses.
翻译:在互联网上缺乏对物(IoT)装置的安全措施及其持续的在线连接,给对手提供了在分布式拒绝服务(DDoS)运动等大规模袭击中将它们作为目标目标甚至滥用作为中间目标的首要机会。在本文件中,我们分析了IoT恶意软件,并侧重于可在公共互联网上达到的端点,这些端点在IoT恶意软件生态系统中起着重要作用。也就是说,我们分析作为投放区作用的端点及其目标,以深入了解这一生态系统的基本动态,例如投放区及其目标IP地址之间的亲近性,以及终端点之间的不同模式。为了实现这一目标,我们逆向设计了2,423 IoT恶意软件样本并从它们提取了字符以获取IP地址。我们进一步从公共互联网扫描器(如Shodan和Censys)收集了这些端点的信息。关于蒙面IP地址的端点,我们检查了无级的跨部(CIDR)网络积累到超过1 000万个以上(78.2%的IPDR),以及端点之间的不同模式。我们从深入的公众IP4号搜索角度从我们未来的尾端的视角可以提供我们深刻的IP4号搜索。