This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to prove that $\mathtt{maxflow}$, a $\mathrm{Ptime}$ complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves on a result of Mulmuley since the class of machines considered extends the class "prams without bit operations". We further improve on this result by showing that euclidean division cannot be computable in polylogarithmic time using division on the reals, pinpointing that euclidean division provides a significant boost in expressive power. On top of showing this new separation result, we show our method captures previous lower bounds results from the literature: Steele and Yao's lower bounds for algebraic decision trees, Ben-Or's lower bounds for algebraic computation trees, Cucker's proof that $\mathrm{NC}$ is not equal to $\mathrm{Ptime}$ in the real case, and Mulmuley's lower bounds for prams without bit operations.
翻译:本文展示了一个新的抽象方法来证明计算复杂度的下限。 基于用于动态系统的表层学和可测量昆虫概念, 显示它概括了上位复杂度文献中前三个下限的结果。 我们用它来证明 $\ matht{maxflow}$\ matht{maxflow} 美元, 美元=mathrm{Ptime{ptime} 完整的问题, 在平行随机访问机器( prams) 操作真实数字的多logariphic 时段中, 无法进行计算。 这是穆尔穆利( Mulmulley) 的结果, 因为所考虑的机器类别扩展了类“ 无位操作 ” 。 我们进一步改进了这个结果, 我们通过显示 ebloclidean 师无法在多logarithymation 时间里进行计算 。 我们用它来证明 $maxclicidean development 提供显著的表达力。 在显示新的分离结果时, 我们展示了我们的方法捕捉到文献的下界结果: Steele and Yao's 下界 laps for regebraricrical deviews deal case, $: brealbilts, Brealbreal crealbilts