Traumatic brain injury can be caused by head impacts, but many brain injury risk estimation models are less accurate across the variety of impacts that patients may undergo. We investigated the spectral characteristics of different head impact types with kinematics classification. Data was analyzed from 3,262 head impacts from lab reconstruction, American football, mixed martial arts, and publicly available car crash data. A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types (e.g., football), reaching a median accuracy of 96% over 1,000 random partitions of training and test sets. To test the classifier on data from different measurement devices, another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards with the classifier reaching over 96% accuracy. The most important features in the classification included both low-frequency and high-frequency features, both linear acceleration features and angular velocity features. Different head impact types had different distributions of spectral densities in low-frequency and high-frequency ranges (e.g., the spectral densities of MMA impacts were higher in high-frequency range than in the low-frequency range). Finally, with the classifier, type-specific, nearest-neighbor regression models were built for 95th percentile maximum principal strain, 95th percentile maximum principal strain in corpus callosum, and cumulative strain damage (15th percentile). This showed a generally higher R2-value than baseline models. The classifier enables a better understanding of the impact kinematics in different sports, and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation. Key words: traumatic brain injury, head impacts, classification, impact kinematics


翻译:脑损伤可能由头部撞击造成,但许多脑损伤风险估计模型在病人可能受到的各种影响中并不十分准确。我们调查了不同头部冲击类型的光谱特性,并进行了运动学分类。数据来自实验室重建、美国足球、混合武术和公开提供的汽车撞车数据产生的3 262头影响。随机森林分类,其光谱密度为线性加速度和角速度特征,对头部撞击类型(如足球)进行分类,达到超过1,000个随机的培训和测试设备分布的96%的中位准确度。为了测试不同测量设备数据分类的分类,又从另外271个实验室重新构造影响类型中检测了271个头部冲击。数据来自另外5个仪器口罩,其分类精确度超过96%。分类中最重要的特征包括低频率和高频率特征,包括线性加速度特征和角速速度特征。不同头部冲击类型在低频率和高频级分类中分布不同(如:光谱缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩),对MMA影响的影响在高频度影响中是高位的,直径直径直径分析,在高位分析中,在最深的直方位数据中,在高位分析中,在高位分析中,在最深的直位数据中显示中,在高的直径直判距中,在最深的测距中,在最深的测距上。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
11+阅读 · 2021年3月25日
专知会员服务
50+阅读 · 2020年12月14日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
18+阅读 · 2019年2月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
11+阅读 · 2021年3月25日
专知会员服务
50+阅读 · 2020年12月14日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
18+阅读 · 2019年2月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员