This paper presents a method for hyperspectral image classification that uses support vector data description (SVDD) with the Gaussian kernel function. SVDD has been a popular machine learning technique for single-class classification, but selecting the proper Gaussian kernel bandwidth to achieve the best classification performance is always a challenging problem. This paper proposes a new automatic, unsupervised Gaussian kernel bandwidth selection approach which is used with a multiclass SVDD classification scheme. The performance of the multiclass SVDD classification scheme is evaluated on three frequently used hyperspectral data sets, and preliminary results show that the proposed method can achieve better performance than published results on these data sets.
翻译:本文介绍了一种使用高山内核功能的支持矢量数据说明的超光谱图像分类方法。 高山内核是用于单级分类的一种流行的机器学习技术,但选择适当的高山内核带宽以实现最佳分类性能总是一个具有挑战性的问题。 本文提出了一个新的自动的、不受监督的高山内核带宽选择方法,该方法用于多级SVDD分类方案。 多级SVDD分类方案的性能根据三种常用的超光谱数据集进行评估,初步结果表明,拟议方法的性能可以优于已公布的关于这些数据组的结果。