Language understanding must identify the logical connections between events in a discourse, but core events are often unstated due to their commonsense nature. This paper fills in these missing events by generating precondition events. Precondition generation can be framed as a sequence-to-sequence problem: given a target event, generate a possible precondition. However, in most real-world scenarios, an event can have several preconditions, requiring diverse generation -- a challenge for standard seq2seq approaches. We propose DiP, a Diverse Precondition generation system that can generate unique and diverse preconditions. DiP uses a generative process with three components -- an event sampler, a candidate generator, and a post-processor. The event sampler provides control codes (precondition triggers) which the candidate generator uses to focus its generation. Unlike other conditional generation systems, DiP automatically generates control codes without training on diverse examples. Analysis against baselines reveals that DiP improves the diversity of preconditions significantly while also generating more preconditions.


翻译:语言理解必须确定话语中事件之间的逻辑联系,但核心事件往往因其常识性而没有说明。本文通过产生先决条件性事件来填补这些缺失事件。 先决条件的生成可以设计成一个顺序到顺序的问题: 给目标事件带来一个可能的前提条件。 但是,在大多数现实世界的情景下,事件可以有若干先决条件,要求不同的一代 -- -- 标准后继2当量方法的挑战。 我们提议DiP,一个多样化的先决条件生成系统,可以产生独特和多样的先决条件。 DiP使用由三个组成部分组成的基因化过程 -- -- 事件取样器、候选生成器和后处理器。事件取样器提供控制代码(先决条件触发器),供候选生成者用来集中其生成。与其他有条件的生成系统不同,DiP自动生成控制代码,而无需对多种实例进行培训。 基准分析显示DiP大大改进了先决条件的多样性,同时创造更多先决条件。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Using Scene Graph Context to Improve Image Generation
Arxiv
4+阅读 · 2018年4月9日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员