Fog networks offer computing resources with varying capacities at different distances from end users. A Fog Node (FN) closer to the network edge may have less powerful computing resources compared to the cloud, but processing of computational tasks in an FN limits long-distance transmission. How should the tasks be distributed between fog and cloud nodes? We formulate a universal non-convex Mixed-Integer Nonlinear Programming (MINLP) problem minimizing task transmission- and processing-related energy with delay constraints to answer this question. It is transformed with Successive Convex Approximation (SCA) and decomposed using the primal and dual decomposition techniques. Two practical algorithms called Energy-EFFicient Resource Allocation (EEFFRA) and Low-Complexity (LC)-EEFFRA are proposed. They allow for successful distribution of network requests between FNs and the cloud in various scenarios significantly reducing the average energy cost and decreasing the number of computational requests with unmet delay requirements.
翻译:与终端用户相距距离不一的雾网络提供能力不同的计算资源。 靠近网络边缘的雾之诺德(FN)可能拥有比云更弱的计算资源,但FN的计算任务处理限制了长途传输。 任务应如何在雾节点和云节点之间分配? 我们制定了一个通用的非冷冻混合- Integer非线性编程(MINLP)问题,最大限度地减少任务传输和处理相关能源问题,并有延迟的制约来回答这一问题。 它与接续的 Convex Approcimation(SCA)(SCA)(CA)(CS)(CS)(CSA)(CA)(CEFFFRA)(S)(C)(CEFFFFRA)和低复杂度(LC)-EFFRA(EFRA)(EC)(LC)(EFOLA)(LC)(LC-EFRA(EFRA)(LFRA)(LFRA(LC)(LC-EC-EFRA)(LFRA(LFRA)(LFOLA)(LFOLA)(LT)(LFOL)(LT)(LVOL)(L)(LV)不同。它们允许在各种情况下成功地将网络请求成功,可以在不同情况下成功地分配网络请求成功,在各种情况下成功地分配网络,在各种情况下成功地将网络要求网络,使平均和云中将网络,使平均和热传输和热能和热能和热能要求大大(LFRA(LFRA(LFA)能要求大大(LFA(LFA(LFA(LFA(L)能)能)能)大大)大大(LP)成功地分配网络,大大)和云(LLLLLLT)(LP)(LP)和云流能和云流能和云中,以不及云中,从而大大未得到满足的频率(LLLLLLLLLLLL)能)大大)大大)大大)大大)大大)的频率问题最小化,从而大大)问题最小化和云流能和云流能和云中,从而大大减少能源成本(L