We study the problem of differentially private clustering under input-stability assumptions. Despite the ever-growing volume of works on differential privacy in general and differentially private clustering in particular, only three works (Nissim et al. 2007, Wang et al. 2015, Huang et al. 2018) looked at the problem of privately clustering "nice" k-means instances, all three relying on the sample-and-aggregate framework and all three measuring utility in terms of Wasserstein distance between the true cluster centers and the centers returned by the private algorithm. In this work we improve upon this line of works on multiple axes. We present a far simpler algorithm for clustering stable inputs (not relying on the sample-and-aggregate framework), and analyze its utility in both the Wasserstein distance and the k-means cost. Moreover, our algorithm has straight-forward analogues for "nice" k-median instances and for the local-model of differential privacy.
翻译:我们根据投入稳定假设研究了不同私人集群问题。尽管关于不同隐私,特别是不同私人集群的工程量不断增加,但只有三部作品(Nism 等人,2007年;Wang 等人,2015年;Huang 等人,2018年)研究了私人集群“良好”K手段实例的问题,这三部作品都依赖样本和聚合框架以及所有三个测量功能的瓦塞尔斯坦真正集群中心与私人算法返回的中心之间的距离。在这项工作中,我们改进了多轴线的工程线。我们为组合稳定投入(不依赖样本和聚合框架)提出了一个简单得多的算法,并分析了其在瓦塞斯坦距离和K手段成本方面的实用性。 此外,我们的算法对“良好”K媒介实例和地方差异隐私模式有着直向的模拟。