Bayesian inference is applied to calibrate and quantify prediction uncertainty in a coupled multi-component Hall thruster model. The model consists of cathode, discharge, and plume sub-models and outputs thruster performance metrics, one-dimensional plasma properties, and the angular distribution of the current density in the plume. The simulated thrusters include a magnetically shielded thruster operating on krypton, the H9, and an unshielded thruster operating on xenon, the SPT-100, at pressures between 4.3--43 $\mu$Torr-Kr and 1.7--80 $\mu$Torr-Xe, respectively. After calibration, the model captures key pressure-related trends, including changes in thrust and upstream shifts in the ion acceleration region. Furthermore, the model exhibits predictive accuracy to within 10\% when evaluated on flow rates and pressures not included in the training data, and can predict some performance characteristics across test facilities to within the same range of conditions. Compared to a previous model calibrated on some of the same data [Eckels et al. 2024], the model reduced predictive errors in thrust and discharge current by greater than 50%. An extrapolation to on-orbit performance is performed with an error of 9%, capturing trends in discharge current but not thrust. These findings are discussed in the context of using data for predictive Hall thruster modeling in the presence of facility effects.


翻译:本研究应用贝叶斯推断方法,对耦合多组分霍尔推力器模型进行校准与预测不确定性量化。该模型由阴极、放电和羽流子模型构成,可输出推力器性能指标、一维等离子体特性以及羽流中电流密度的角向分布。模拟对象包括以氪工质运行的磁屏蔽推力器H9,以及以氙工质运行的非屏蔽推力器SPT-100,其背景压力范围分别为4.3--43 $\mu$Torr-Kr和1.7--80 $\mu$Torr-Xe。校准后的模型能够捕捉关键的压力相关趋势,包括推力变化和离子加速区的上游迁移。此外,在未参与训练数据的流量与压力条件下进行评估时,模型展现出10%以内的预测精度,并能在相同条件范围内跨试验设施预测部分性能特征。与先前基于部分相同数据校准的模型[Eckels et al. 2024]相比,本模型将推力与放电电流的预测误差降低了50%以上。对在轨性能的外推预测误差为9%,虽能捕捉放电电流趋势但未能准确预测推力变化。本文结合试验设施效应的影响,对上述结果在霍尔推力器预测建模中的数据应用价值进行了讨论。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员