We design a monotone meshfree finite difference method for linear elliptic equations in the non-divergence form on point clouds via a nonlocal relaxation method. Nonlocal approximations of linear elliptic equations are first introduced to which a meshfree finite difference method applies. Minimal positive stencils are obtained through a local $l_1$-type optimization procedure that automatically guarantees the stability and, therefore, the convergence of the meshfree discretization for linear elliptic equations. The key to the success of the method relies on the existence of positive stencils for a given point cloud geometry. We provide sufficient conditions for the existence of positive stencils by finding neighbors within an ellipse (2d) or ellipsoid (3d) surrounding each interior point, generalizing the study for Poisson's equation by Seibold in 2008. It is well-known that wide stencils are in general needed for constructing consistent and monotone finite difference schemes for linear elliptic equations. Our study improves the known theoretical results on the existence of positive stencils for linear elliptic equations when the ellipticity constant becomes small. Numerical algorithms and practical guidance are provided with an eye on the case of small ellipticity constant. We present numerical results in 2d and 3d at the end.
翻译:我们设计了一种单一的单调网格差异法,用于通过非局部放松法,在点云上的非调整式的线性椭圆方程式。 首次引入了非本地的线性椭圆方程式近似值, 使用网状无网状差异法。 通过本地的 $l_ 1 美元类型的优化程序, 获得了最小正向线性线性线性线性线性线性线性线性线性线性线性方程式, 这自动保证了线性椭圆方程式的稳定性, 因此, 也保证了线性极性线性方程式的融合。 这种方法成功的关键在于某点云性线性线性线性线性线性线性线性线性线性线性方程式的存在。 我们为正向的线性椭圆形线性线性线性线性线性线性线性方程式的存在提供了充分的条件, 在每个内端点内找到邻居(2d) 或线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性理论性理论结果于2008年Slipal 。