Given a finite set of matrices with integer entries, the matrix mortality problem asks if there exists a product of these matrices equal to the zero matrix. We consider a special case of this problem where all entries of the matrices are nonnegative. This case is equivalent to the NFA mortality problem, which, given an NFA, asks for a word $w$ such that the image of every state under $w$ is the empty set. The size of the alphabet of the NFA is then equal to the number of matrices in the set. We study the length of shortest such words depending on the size of the alphabet. We show that this length for an NFA with $n$ states can be at least $2^n - 1$, $2^{(n - 4)/2}$ and $2^{(n - 2)/3}$ if the size of the alphabet is, respectively, equal to $n$, three and two.
翻译:暂无翻译
Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.https://abc.xyz/