With the development of deep neural network generative models in recent years, significant progress has been made in the research of depth estimation in lane scenes. However, current research achievements are mainly focused on clear daytime scenarios. In complex rainy environments, the influence of rain streaks and local fog effects often leads to erroneous increases in the overall depth estimation values in images. Moreover, these natural factors can introduce disturbances to the accurate prediction of depth boundaries in images. In this paper, we investigate lane depth estimation in complex rainy environments. Based on the concept of convolutional kernel prediction, we propose a dual-layer pixel-wise convolutional kernel prediction network trained on offline data. By predicting two sets of independent convolutional kernels for the target image, we restore the depth information loss caused by complex environmental factors and address the issue of rain streak artifacts generated by a single convolutional kernel set. Furthermore, considering the lack of real rainy lane data currently available, we introduce an image synthesis algorithm, RCFLane, which comprehensively considers the darkening of the environment due to rainfall and local fog effects. We create a synthetic dataset containing 820 experimental images, which we refer to as RainKITTI, on the commonly used depth estimation dataset KITTI. Extensive experiments demonstrate that our proposed depth estimation framework achieves favorable results in highly complex lane rainy environments.
翻译:暂无翻译