Autonomous navigation in dynamic environments is a complex but essential task for autonomous robots. Recent deep reinforcement learning approaches show promising results to solve the problem, but it is not solved yet, as they typically assume no robot kinodynamic restrictions, holonomic movement or perfect environment knowledge. Moreover, most algorithms fail in the real world due to the inability to generate real-world training data for the huge variability of possible scenarios. In this work, we present a novel planner, DQN-DOVS, that uses deep reinforcement learning on a descriptive robocentric velocity space model to navigate in highly dynamic environments. It is trained using a smart curriculum learning approach on a simulator that faithfully reproduces the real world, reducing the gap between the reality and simulation. We test the resulting algorithm in scenarios with different number of obstacles and compare it with many state-of-the-art approaches, obtaining a better performance. Finally, we try the algorithm in a ground robot, using the same setup as in the simulation experiments.
翻译:动态环境中的自主导航对于自主机器人来说是一项复杂但必不可少的任务。 最近的深层强化学习方法显示了解决该问题的有希望的结果,但还没有得到解决,因为它们通常假定没有机器人的动力动力限制、人类运动或完美的环境知识。 此外,在现实世界中,大多数算法都失败,因为无法生成真实世界的培训数据,以适应各种可能情景的巨大变异。在这项工作中,我们提出了一个新型的规划师DQN-DOVS,它使用描述性强强力超中枢速度空间模型进行深度强化学习,在高度动态环境中进行导航。它被培训时,使用智能课程学习方法,模拟器模拟了真实世界,缩小了现实与模拟之间的差距。我们用不同数量的障碍测试由此产生的算法,并将它与许多最先进的方法进行比较,取得更好的表现。 最后,我们用模拟实验中的同一设置,在地面机器人中试验算法。