The electrical power grid is a critical infrastructure, with disruptions in transmission having severe repercussions on daily activities, across multiple sectors. To identify, prevent, and mitigate such events, power grids are being refurbished as 'smart' systems that include the widespread deployment of GPS-enabled phasor measurement units (PMUs). PMUs provide fast, precise, and time-synchronized measurements of voltage and current, enabling real-time wide-area monitoring and control. However, the potential benefits of PMUs, for analyzing grid events like abnormal power oscillations and load fluctuations, are hindered by the fact that these sensors produce large, concurrent volumes of noisy data. In this paper, we describe working with power grid engineers to investigate how this problem can be addressed from a visual analytics perspective. As a result, we have developed PMU Tracker, an event localization tool that supports power grid operators in visually analyzing and identifying power grid events and tracking their propagation through the power grid's network. As a part of the PMU Tracker interface, we develop a novel visualization technique which we term an epicentric cluster dendrogram, which allows operators to analyze the effects of an event as it propagates outwards from a source location. We robustly validate PMU Tracker with: (1) a usage scenario demonstrating how PMU Tracker can be used to analyze anomalous grid events, and (2) case studies with power grid operators using a real-world interconnection dataset. Our results indicate that PMU Tracker effectively supports the analysis of power grid events; we also demonstrate and discuss how PMU Tracker's visual analytics approach can be generalized to other domains composed of time-varying networks with epicentric event characteristics.


翻译:电网是一个至关重要的基础设施,电网中断的传输对多个部门的日常活动产生严重影响。为了查明、预防和缓解此类事件,电网正在被翻新为“智能”系统,包括广泛部署全球定位系统驱动的散声器测量装置(PMUs)。 PMUs提供快速、精确和时间同步的电压和电流测量,从而能够实时进行宽域监测和控制。然而,PMUs在分析电网事件方面的潜在好处,如异常的通用电动振动和负荷波动等,由于这些传感器产生大量同时出现的噪音数据而受阻。在本文件中,我们描述与电网工程师合作,从视觉分析角度研究如何解决这一问题。结果,我们开发了PMUMU Tracker跟踪工具,支持电网操作员进行视觉分析和确定电网事件,跟踪电网运行过程事件通过电网网络的传播。作为PMU跟踪界面界面界面的一部分,我们开发了一种新型的直线路技术,我们用直径电路路路路路路线路对数据进行数据分析,我们用PDrodrodrogragraphy 进行直径分析,从而分析一个事件源,我们可以分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员