The prevalence of data scraping from social media as a means to obtain datasets has led to growing concerns regarding unauthorized use of data. Data poisoning attacks have been proposed as a bulwark against scraping, as they make data "unlearnable" by adding small, imperceptible perturbations. Unfortunately, existing methods require knowledge of both the target architecture and the complete dataset so that a surrogate network can be trained, the parameters of which are used to generate the attack. In this work, we introduce autoregressive (AR) poisoning, a method that can generate poisoned data without access to the broader dataset. The proposed AR perturbations are generic, can be applied across different datasets, and can poison different architectures. Compared to existing unlearnable methods, our AR poisons are more resistant against common defenses such as adversarial training and strong data augmentations. Our analysis further provides insight into what makes an effective data poison.
翻译:从社交媒体中提取数据作为获取数据集手段的普遍程度已导致人们日益关注未经授权使用数据的问题。数据中毒袭击被提议为防止报废的堡垒,因为它们通过添加小的、不可察觉的扰动而使数据“不可忽略 ” 。 不幸的是,现有的方法要求了解目标结构和完整的数据集,以便培训替代网络,其参数被用来引发袭击。在这项工作中,我们引入了自动递减(AR)中毒,这种方法可以产生有毒数据,而不能进入更广泛的数据集。拟议的AR突扰是通用的,可以适用于不同的数据集,可以毒害不同的结构。与现有的不可泄露方法相比,我们的AR毒药更能抵抗常见的防御,例如对抗性培训和强大的数据增强。我们的分析进一步揭示了什么是有效的数据毒药。