While trust in human-robot interaction is increasingly recognized as necessary for the implementation of social robots, our understanding of regulating trust in human-robot interaction is yet limited. In the current experiment, we evaluated different approaches to trust calibration in human-robot interaction. The within-subject experimental approach utilized five different strategies for trust calibration: proficiency, situation awareness, transparency, trust violation, and trust repair. We implemented these interventions into a within-subject experiment where participants (N=24) teamed up with a social robot and played a collaborative game. The level of trust was measured after each section using the Multi-Dimensional Measure of Trust (MDMT) scale. As expected, the interventions have a significant effect on i) violating and ii) repairing the level of trust throughout the interaction. Consequently, the robot demonstrating situation awareness was perceived as significantly more benevolent than the baseline.


翻译:尽管在人机交互中的信任被越来越认为是实现社会机器人必要的,但我们对于如何调节人机交互中的信任还存在许多不确定性。在当前的实验中,我们评估了不同的人机交互中信任校准方法,采用了五种不同的信任校准方法,包括熟练度、情境感知、透明度、信任违规和信任修复。我们将这些方法应用于一个代表合作的游戏任务,让参与者(N=24)与一个社会机器人合作完成,使用多维度的信任量表(MDMT)来衡量每个阶段的信任水平。如预期的那样,这些方法对信任违规和信任修复产生了显著的影响,因此,展示情景感知能力的机器人被认为比基准机器人表现的更仁慈。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
10+阅读 · 2021年8月4日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员