Dynamic discrete choice models are widely employed to answer substantive and policy questions in settings where individuals' current choices have future implications. However, estimation of these models is often computationally intensive and/or infeasible in high-dimensional settings. Indeed, even specifying the structure for how the utilities/state transitions enter the agent's decision is challenging in high-dimensional settings when we have no guiding theory. In this paper, we present a semi-parametric formulation of dynamic discrete choice models that incorporates a high-dimensional set of state variables, in addition to the standard variables used in a parametric utility function. The high-dimensional variable can include all the variables that are not the main variables of interest but may potentially affect people's choices and must be included in the estimation procedure, i.e., control variables. We present a data-driven recursive partitioning algorithm that reduces the dimensionality of the high-dimensional state space by taking the variation in choices and state transition into account. Researchers can then use the method of their choice to estimate the problem using the discretized state space from the first stage. Our approach can reduce the estimation bias and make estimation feasible at the same time. We present Monte Carlo simulations to demonstrate the performance of our method compared to standard estimation methods where we ignore the high-dimensional explanatory variable set.
翻译:在个人当前选择具有未来影响的环境下,广泛使用动态离散选择模型来回答实质性和政策问题。然而,这些模型的估算往往在计算上密集和/或高维环境中不可行。事实上,甚至指定公用事业/状态过渡如何进入代理机构决策的结构,在我们没有指导理论的情况下,在高维环境中是具有挑战性的。在本文中,我们提出了一个半参数式的动态离散选择模型的配方,其中包括一套高维的变量,除了参数性能功能中使用的标准变量之外,还包含一个高维度变量。高维变量可以包括不是主要利益变量,但有可能影响人们选择的所有变量,并且必须纳入估算程序,即控制变量。我们提出一种数据驱动的回回溯分割算算法,通过选择和状态转换的变化来降低高维度空间的维度。然后,研究人员可以使用他们选择的方法,从第一阶段的离散状态空间来估计问题。我们的方法可以减少估算偏差,而有可能影响人们的选择,但有可能影响人们的选择,并且必须纳入估算程序,即控制变量变量变量变量。我们提出了一个数据驱动的回度计算法,这样可以模拟。我们所设定的高标准的模拟方法。