Transition probability densities are fundamental to option pricing. Advancing recent work in deep learning, we develop novel transition density function generators through solving backward Kolmogorov equations in parametric space for cumulative probability functions, using neural networks to obtain accurate approximations of transition probability densities, creating ultra-fast transition density function generators offline that can be trained for any underlying. These are 'single solve' , so they do not require recalculation when parameters are changed (e.g. recalibration of volatility) and are portable to other option pricing setups as well as to less powerful computers, where they can be accessed as quickly as closed-form solutions. We demonstrate the range of application for one-dimensional cases, exemplified by the Black-Scholes-Merton model, two-dimensional cases, exemplified by the Heston process, and finally for a modified Heston model with time-dependent parameters that has no closed-form solution.
翻译:过渡概率密度对于选项定价至关重要。 推进最近深层学习的工作,我们开发了新型过渡密度功能生成器,方法是在累积概率函数的参数空间中解决后向的科尔莫戈罗夫方程式,使用神经网络获取过渡概率密度的准确近似值,创建超快过渡密度功能生成器,可以对任何基底进行离线培训。这些是“单线解 ”, 因此当参数变化时,它们不需要重新计算( 例如, 波动的校正), 并且可以被其他选项定价设置以及较弱的计算机移动到其他选项定价设置中, 并且可以像封闭式解决方案一样快速地进入。 我们展示了一维案例的应用范围, 以黑- 雪莱斯- 墨尔顿模型为示例, 以赫斯顿进程为示例的二维案例为示例, 最后是带有无封闭式解决方案的时间参数的经修改的赫斯顿模型。