Given a location-based social network, how to find the communities that are highly relevant to query users and have top overall scores in multiple attributes according to user preferences? Typically, in the face of such a problem setting, we can model the network as a multi-attributed road-social network, in which each user is linked with location information and $d$ ($\geq\! 1$) numerical attributes. In practice, user preferences (i.e., weights) are usually inherently uncertain and can only be estimated with bounded accuracy, because a human user is not able to designate exact values with absolute precision. Inspired by this, we introduce a normative community model suitable for multi-criteria decision making, called multi-attributed community (MAC), based on the concepts of $k$-core and a novel dominance relationship specific to preferences. Given uncertain user preferences, namely, an approximate representation of weights, the MAC search reports the exact communities for each of the possible weight settings. We devise an elegant index structure to maintain the dominance relationships, based on which two algorithms are developed to efficiently compute the top-$j$ MACs. The efficiency and scalability of our algorithms and the effectiveness of MAC model are demonstrated by extensive experiments on both real-world and synthetic road-social networks.


翻译:鉴于基于地点的社会网络,如何找到与查询用户高度相关的社区,并且根据用户的偏好,在多个属性中拥有最高总分? 一般来说,面对这样的问题设置,我们可以将网络建为多分配道路社会网络,其中每个用户都与定位信息相联系,并有美元($Geq\\!$1美元)的数值属性。在实践中,用户偏好(即权重)通常具有内在不确定性,只能以约束性准确度来估计,因为一个用户无法绝对精确地指定准确值。受此启发,我们引入了适合多标准决策的规范社区模式,称为多分配道路社会网络(MAC),其基础是多分配道路社会网络(MAC),其概念是“$核心”和“新优势”关系。鉴于用户偏好不确定,即权重的大致代表,MAC搜索报告每个可能的重量环境的准确社区。我们设计了一个优雅的指数结构,以保持主导性关系,因为根据这一结构,我们开发了两种算法,以高效地配置顶价($)MAC的顶值。我们称之为“多分配”的规范社区模式,通过真实的模型展示了我们真实的实效和比例,我们真实的模型,展示了我们的道路网络的效能和高度和比例。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
专知会员服务
43+阅读 · 2020年7月7日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员