Realizing the potential gains of large-scale MIMO systems requires the accurate estimation of their channels or the fine adjustment of their narrow beams. This, however, is typically associated with high channel acquisition/beam sweeping overhead that scales with the number of antennas. Machine and deep learning represent promising approaches to overcome these challenges thanks to their powerful ability to learn from prior observations and side information. Training machine and deep learning models, however, requires large-scale datasets that are expensive to collect in deployed systems. To address this challenge, we propose a novel direction that utilizes digital replicas of the physical world to reduce or even eliminate the MIMO channel acquisition overhead. In the proposed digital twin aided communication, 3D models that approximate the real-world communication environment are constructed and accurate ray-tracing is utilized to simulate the site-specific channels. These channels can then be used to aid various communication tasks. Further, we propose to use machine learning to approximate the digital replicas and reduce the ray tracing computational cost. To evaluate the proposed digital twin based approach, we conduct a case study focusing on the position-aided beam prediction task. The results show that a learning model trained solely with the data generated by the digital replica can achieve relatively good performance on the real-world data. Moreover, a small number of real-world data points can quickly achieve near-optimal performance, overcoming the modeling mismatches between the physical and digital worlds and significantly reducing the data acquisition overhead.


翻译:实现大型MIMO系统的潜在收益,需要准确估计其频道或细微调整其狭窄的光束。然而,这通常与高频道获取/光束铺天盖天线和天线数量的高频道获取/光束铺天盖天机有关。机器和深层学习是克服这些挑战的有希望的办法,因为它们具有从先前的观测和侧面信息中学习的强大能力。培训机器和深层学习模型需要大型数据集,而这些数据集在部署的系统中收集费用昂贵。为了应对这一挑战,我们建议采用新的方向,利用物理世界的数字复制物减少甚至消除IMO频道获取的间接间接。在拟议的双向数字通信中,3D模型接近实际世界通信环境,并使用准确的光谱采集来模拟特定地点的渠道。这些渠道可用于帮助开展各种通信任务。此外,我们提议使用机器学习来估计数字复制品,并降低模型的计算成本。为了评估拟议的数字双基方法,我们进行案例研究,重点是定位的轨道预测任务接近世界。结果显示,通过经过培训的模拟数据,通过模拟的模型可以很快地获得数据。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员