We study how to generate binary de Bruijn sequences efficiently from the class of simple linear feedback shift registers with feedback function $f(x_0, x_1, \ldots, x_{n-1}) = x_0 + x_1 + x_{n-1}$ for $n \geq 3$, using the cycle joining method. Based on the properties of this class of LFSRs, we propose two new generic successor rules, each of which produces at least $2^{n-3}$ de Bruijn sequences. These two classes build upon a framework proposed by Gabric, Sawada, Williams and Wong in Discrete Mathematics vol. 341, no. 11, pp. 2977--2987, November 2018. Here we introduce new useful choices for the uniquely determined state in each cycle to devise valid successor rules. These choices significantly increase the number of de Bruijn sequences that can be generated. In each class, the next bit costs $O(n)$ time and $O(n)$ space for a fixed $n$.


翻译:我们研究如何利用循环组合方法,从简单的线性反馈转移登记册类别中高效生成二进制的二进制,其反馈功能为$f(x_0, x_1,\ldots, x ⁇ n-1})=x_0+x_1+x ⁇ n-1}$n geq 3美元。根据这一类LFSR的特性,我们提议了两项新的通用后续规则,其中每一项至少产生2美元-美元-德布鲁伊恩序列。这两个类别以Gabric、Sawada、Williams和Wong在Discrete Mamatics vol.341, No.11, pp.2977-2987, 2018年11月提出的框架为基础。我们在这里为每个周期中唯一确定的状态引入新的有用选择,以制定有效的后续规则。这些选择大大增加了可生成的德布鲁伊恩序列的数量。在每类中,下一组费用为美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元/美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月15日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
1+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
0+阅读 · 2021年3月6日
Arxiv
4+阅读 · 2019年2月8日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月15日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
相关论文
Arxiv
1+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
0+阅读 · 2021年3月6日
Arxiv
4+阅读 · 2019年2月8日
Top
微信扫码咨询专知VIP会员