We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models. The aim is two-fold: to improve the predictive power while maintaining interpretability of the models. To go beyond the black box paradigm of artificial neural networks, we propose a parsimonious and robust semi-parametric approach (i.e., a landmarking competing risks model) that combines routinely collected low-resolution data with predictive features extracted from a convolutional neural network, that was trained on high resolution time-dependent information. We then use saliency maps to analyze and explain the extra predictive power of this model. To illustrate our methodology, we focus on healthcare-associated infections in patients admitted to an intensive care unit.
翻译:我们提出了一个将高分辨率纵向数据与生存模型动态预测能力相结合的新方法。其目标有两个方面:提高预测力,同时保持模型的可解释性。为了超越人工神经网络的黑盒范式,我们提议一种简单和有力的半参数方法(即具有里程碑意义的相互竞争的风险模型),将常规收集的低分辨率数据与从一个动态神经网络中提取的预测特征结合起来,后者经过关于高分辨率依赖时间的信息的培训。然后我们使用突出的地图来分析和解释这一模型的额外预测力。为了说明我们的方法,我们侧重于在被集中护理单位接纳的病人中与保健有关的感染。