In this paper, we investigate the problem of scheduling and resource allocation over a time varying set of clients with heterogeneous demands.In this context, a service provider has to schedule traffic destined to users with different classes of requirements and to allocate bandwidth resources over time as a means to efficiently satisfy service demands within a limited time horizon. This is a highly intricate problem, in particular in wireless communication systems, and solutions may involve tools stemming from diverse fields, including combinatorics and constrained optimization. Although recent work has successfully proposed solutions based on Deep Reinforcement Learning (DRL), the challenging setting of heterogeneous user traffic and demands has not been addressed. We propose a deep deterministic policy gradient algorithm that combines state-of-the-art techniques, namely Distributional RL and Deep Sets, to train a model for heterogeneous traffic scheduling. We test on diverse scenarios with different time dependence dynamics, users' requirements, and resources available, demonstrating consistent results using both synthetic and real data. We evaluate the algorithm on a wireless communication setting using both synthetic and real data and show significant gains in terms of Quality of Service (QoS) defined by the classes, against state-of-the-art conventional algorithms from combinatorics, optimization and scheduling metric(e.g. Knapsack, Integer Linear Programming, Frank-Wolfe, Exponential Rule).


翻译:在本文中,我们调查了在需求各不相同、需求各异的一组不同客户之间时间安排和资源分配的问题。 在这方面,服务供应商必须安排向不同需求类别用户发送的交通量,并随着时间的推移分配带宽资源,以此作为在有限时间范围内高效满足服务需求的手段。这是一个极为复杂的问题,特别是在无线通信系统中,解决办法可能涉及来自不同领域的工具,包括组合和限制优化。虽然最近的工作成功地提出了基于深度强化学习(DRL)的解决方案,但具有挑战性的用户流量和需求设置却未得到解决。我们建议采用一种深度的确定性政策梯度算法,将最新技术(即分销RL和深层设置)结合起来,以培训一种混合交通调度模式。我们测试不同时间依赖性动态、用户需求以及可用资源的不同情景,同时利用合成数据和真实数据来展示一致的结果。我们利用合成数据和真实数据评价无线通信设置的算法,并显示各班级确定的服务质量(QOS)方面的显著进步。我们建议采用州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2019年6月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员