Procedural Content Generation via Reinforcement Learning (PCGRL) foregoes the need for large human-authored data-sets and allows agents to train explicitly on functional constraints, using computable, user-defined measures of quality instead of target output. We explore the application of PCGRL to 3D domains, in which content-generation tasks naturally have greater complexity and potential pertinence to real-world applications. Here, we introduce several PCGRL tasks for the 3D domain, Minecraft (Mojang Studios, 2009). These tasks will challenge RL-based generators using affordances often found in 3D environments, such as jumping, multiple dimensional movement, and gravity. We train an agent to optimize each of these tasks to explore the capabilities of previous research in PCGRL. This agent is able to generate relatively complex and diverse levels, and generalize to random initial states and control targets. Controllability tests in the presented tasks demonstrate their utility to analyze success and failure for 3D generators.
翻译:通过强化学习(PCGRL)生成内容的程序排除了使用大型人造数据集的必要性,并允许代理商使用可计算、用户定义的质量衡量标准而不是目标产出,就功能限制进行明确培训。我们探索将PCGRL应用于3D域,其中内容生成任务自然具有更大的复杂性和与现实世界应用的关联性。在这里,我们为3D域引入了若干PCGRL任务,Minecraft (Mojang Stududio,2009年)。这些任务将利用在3D环境中经常发现的支付能力,如跳跃、多维运动和重力,对基于RL的发电机提出质疑。我们培训一个代理商,优化其中每一项任务,以探索PCGRL以往研究的能力。该代理商能够产生相对复杂和多样的水平,并概括到随机初始状态和控制目标。在提出的任务中进行的控制性测试显示了其对分析3D发电机的成败的效用。