Testing the equality of two proportions is a common procedure in science, especially in medicine and public health. In these domains it is crucial to be able to quantify evidence for the absence of a treatment effect. Bayesian hypothesis testing by means of the Bayes factor provides one avenue to do so, requiring the specification of prior distributions for parameters. The most popular analysis approach views the comparison of proportions from a contingency table perspective, assigning prior distributions directly to the two proportions. Another, less popular approach views the problem from a logistic regression perspective, assigning prior distributions to logit-transformed parameters. Reanalyzing 39 null results from the New England Journal of Medicine with both approaches, we find that they can lead to markedly different conclusions, especially when the observed proportions are at the extremes (i.e., very low or very high). We explain these stark differences and provide recommendations for researchers interested in testing the equality of two proportions and users of Bayes factors more generally. The test that assigns prior distributions to logit-transformed parameters creates prior dependence between the two proportions and yields weaker evidence when the observations are at the extremes. When comparing two proportions, we argue that this test should become the new default.
翻译:测试两种比例的平等是科学的一个常见程序,特别是在医学和公共卫生方面。在这些领域,重要的是能够量化缺乏治疗效果的证据。用贝叶斯系数进行的巴伊西亚假设测试提供了一种途径,要求具体说明先前的参数分布。最受欢迎的分析方法从应急表的角度看待比例的比较,将先前的分布直接分配给两个比例。另一个较不受欢迎的方法从后勤回归的角度来看待问题,将先前的分布分配分配分配到登录转换参数。用这两种方法重新分析《新英格兰医学杂志》的39个无效结果,我们发现它们可以导致明显不同的结论,特别是在观察到的比例处于极端(即非常低或非常高)的情况下。我们解释这些明显的差异,并向有兴趣测试两个比例和巴伊斯系数使用者的均等的研究人员提供建议。将先前分配分配分配到逻辑转换参数的测试,造成两种比例之间的先前依赖性,在观察处于极端时则产生较弱的证据。在比较两个比例时,我们认为这项测试应该成为新的默认。