Testing the equality of two proportions is a common procedure in science, especially in medicine and public health. In these domains it is crucial to be able to quantify evidence for the absence of a treatment effect. Bayesian hypothesis testing by means of the Bayes factor provides one avenue to do so, requiring the specification of prior distributions for parameters. The most popular analysis approach views the comparison of proportions from a contingency table perspective, assigning prior distributions directly to the two proportions. Another, less popular approach views the problem from a logistic regression perspective, assigning prior distributions to logit-transformed parameters. Reanalyzing 39 null results from the New England Journal of Medicine with both approaches, we find that they can lead to markedly different conclusions, especially when the observed proportions are at the extremes (i.e., very low or very high). We explain these stark differences and provide recommendations for researchers interested in testing the equality of two proportions and users of Bayes factors more generally. The test that assigns prior distributions to logit-transformed parameters creates prior dependence between the two proportions and yields weaker evidence when the observations are at the extremes. When comparing two proportions, we argue that this test should become the new default.


翻译:测试两种比例的平等是科学的一个常见程序,特别是在医学和公共卫生方面。在这些领域,重要的是能够量化缺乏治疗效果的证据。用贝叶斯系数进行的巴伊西亚假设测试提供了一种途径,要求具体说明先前的参数分布。最受欢迎的分析方法从应急表的角度看待比例的比较,将先前的分布直接分配给两个比例。另一个较不受欢迎的方法从后勤回归的角度来看待问题,将先前的分布分配分配分配到登录转换参数。用这两种方法重新分析《新英格兰医学杂志》的39个无效结果,我们发现它们可以导致明显不同的结论,特别是在观察到的比例处于极端(即非常低或非常高)的情况下。我们解释这些明显的差异,并向有兴趣测试两个比例和巴伊斯系数使用者的均等的研究人员提供建议。将先前分配分配分配到逻辑转换参数的测试,造成两种比例之间的先前依赖性,在观察处于极端时则产生较弱的证据。在比较两个比例时,我们认为这项测试应该成为新的默认。

0
下载
关闭预览

相关内容

专知会员服务
141+阅读 · 2021年3月17日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年7月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
141+阅读 · 2021年3月17日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员