Phonocardiogram (PCG) signal analysis is a critical, widely-studied technology to noninvasively analyze the heart's mechanical activity. Through evaluating heart sounds, this technology has been chiefly leveraged as a preliminary solution to automatically diagnose Cardiovascular diseases among adults; however, prenatal tasks such as fetal gender identification have been relatively less studied using fetal Phonocardiography (FPCG). In this work, we apply common PCG signal processing techniques on the gender-tagged Shiraz University Fetal Heart Sounds Database and study the applicability of previously proposed features in classifying fetal gender using both Machine Learning and Deep Learning models. Even though PCG data acquisition's cost-effectiveness and feasibility make it a convenient method of Fetal Heart Rate (FHR) monitoring, the contaminated nature of PCG signals with the noise of various types makes it a challenging modality. To address this problem, we experimented with both static and adaptive noise reduction techniques such as Low-pass filtering, Denoising Autoencoders, and Source Separators. We apply a wide range of previously proposed classifiers to our dataset and propose a novel ensemble method of Fetal Gender Identification (FGI). Our method substantially outperformed the baseline and reached up to 91% accuracy in classifying fetal gender of unseen subjects.


翻译:心电图(PCG)信号分析是一项关键且广泛研究的技术,用于对心脏的机械活动进行非侵入性分析。通过评估心脏声音,这一技术主要被作为成人心血管疾病自动诊断的初步解决办法;然而,胎儿性别识别等产前任务相对较少使用胎儿心血管造影法(FPCG)来研究。在这项工作中,我们将共同的PCG信号处理技术应用于性别标记的Shiraz大学胎儿心脏声音数据库,并研究先前提议的功能在利用机器学习和深层学习模型对胎儿性别进行分类方面的适用性。尽管PCG数据获取的成本效益和可行性使得它成为胎儿心率监测的方便方法,但PCG信号的污染性质和各种类型的噪音使得它成为一种具有挑战性的方式。为了解决这个问题,我们试验了静态和适应性减少噪音技术,例如低吸取过滤器、低调自闭式自动调器和源分离器等。我们以前提出的对胎儿性别分类方法的应用范围很广,我们把先前提议的分类人员应用于数据设置和深层学习模型的精确度,并提议将性别基因精度的精确性分类,从而将一个新型的常规地分类为我们的基本的FIGIG的性别基本方法。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年3月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2019年6月5日
VIP会员
Top
微信扫码咨询专知VIP会员