Recent work in fair machine learning has proposed dozens of technical definitions of algorithmic fairness and methods for enforcing these definitions. However, we still lack an understanding of how to develop machine learning systems with fairness criteria that reflect relevant stakeholders' nuanced viewpoints in real-world contexts. To address this gap, we propose a framework for eliciting stakeholders' subjective fairness notions. Combining a user interface that allows stakeholders to examine the data and the algorithm's predictions with an interview protocol to probe stakeholders' thoughts while they are interacting with the interface, we can identify stakeholders' fairness beliefs and principles. We conduct a user study to evaluate our framework in the setting of a child maltreatment predictive system. Our evaluations show that the framework allows stakeholders to comprehensively convey their fairness viewpoints. We also discuss how our results can inform the design of predictive systems.


翻译:最近关于公平机器学习的工作提出了数十项关于算法公平的技术定义以及执行这些定义的方法,然而,我们仍然对如何开发符合公平标准的机器学习系统缺乏了解,这些系统反映了现实世界中相关利益攸关方的细微观点。为解决这一差距,我们提出了一个框架,以征求利益攸关方的主观公平概念。将用户界面与访谈协议结合起来,使利益攸关方能够审查数据和算法的预测,以探究利益攸关方与界面互动时的想法。我们可以确定利益攸关方的公平信仰和原则。我们开展用户研究,评估我们在儿童虐待预测系统设置方面的框架。我们的评估表明,框架允许利益攸关方全面传达其公平观点。我们还讨论了我们的成果如何为预测系统的设计提供信息。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
13+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Fairness in Ranking: A Survey
Arxiv
0+阅读 · 2021年3月25日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
13+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Top
微信扫码咨询专知VIP会员