Recently, Miller and Wu introduced the positive $\lambda$-calculus, a call-by-value $\lambda$-calculus with sharing obtained by assigning proof terms to the positively polarized focused proofs for minimal intuitionistic logic. The positive $\lambda$-calculus stands out among $\lambda$-calculi with sharing for a compactness property related to the sharing of variables. We show that -- thanks to compactness -- the positive calculus neatly captures the core of useful sharing, a technique for the study of reasonable time cost models.
翻译:暂无翻译