Dynamic extensions of 3D Gaussian Splatting (3DGS) achieve high-quality reconstructions through neural motion fields, but per-Gaussian neural inference makes these models computationally expensive. Building on DeformableGS, we introduce Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), which bridges this efficiency-fidelity gap through three complementary modules: Temporal Sensitivity Pruning (TSP) removes low-impact Gaussians via temporally aggregated sensitivity analysis, Temporal Sensitivity Sampling (TSS) perturbs timestamps to suppress floaters and improve temporal coherence, and GroupFlow distills the learned deformation field into shared SE(3) transformations for efficient groupwise motion. On the 50 dynamic scenes in MonoDyGauBench, integrating TSP and TSS into DeformableGS accelerates rendering by 6.78$\times$ on average while maintaining neural-field fidelity and using 10$\times$ fewer primitives. Adding GroupFlow culminates in 13.71$\times$ faster rendering and 2.53$\times$ shorter training, surpassing all baselines in speed while preserving superior image quality.
翻译:3D高斯泼溅(3DGS)的动态扩展方法通过神经运动场实现了高质量重建,但逐高斯神经推断导致这些模型计算成本高昂。基于DeformableGS,我们提出了快速可变形3D高斯泼溅(SpeeDe3DGS),通过三个互补模块弥合效率与保真度之间的差距:时序敏感度剪枝(TSP)通过时序聚合敏感度分析移除低影响高斯单元,时序敏感度采样(TSS)通过扰动时间戳抑制漂浮伪影并提升时序一致性,GroupFlow则将学习到的变形场提炼为共享SE(3)变换以实现高效分组运动。在MonoDyGauBench的50个动态场景中,将TSP和TSS集成到DeformableGS可使渲染速度平均提升6.78倍,同时保持神经场保真度并减少90%的图元数量。进一步加入GroupFlow最终实现13.71倍的渲染加速和2.53倍的训练时间缩短,在保持卓越图像质量的同时,其速度超越所有基线方法。