Useful information is the basis for model decisions. Estimating useful information in feature maps promotes the understanding of the mechanisms of neural networks. Low frequency is a prerequisite for useful information in data representations, because downscaling operations reduce the communication bandwidth. This study proposes the use of spectral roll-off points (SROPs) to integrate the low-frequency condition when estimating useful information. The computation of an SROP is extended from a 1-D signal to a 2-D image by the required rotation invariance in image classification tasks. SROP statistics across feature maps are implemented for layer-wise useful information estimation. Sanity checks demonstrate that the variation of layer-wise SROP distributions among model input can be used to recognize useful components that support model decisions. Moreover, the variations of SROPs and accuracy, the ground truth of useful information of models, are synchronous when adopting sufficient training in various model structures. Therefore, SROP is an accurate and convenient estimation of useful information. It promotes the explainability of artificial intelligence with respect to frequency-domain knowledge.
翻译:专题图中的有用信息估计有助于了解神经网络机制; 低频率是数据表示中有用信息的先决条件,因为降尺度操作会减少通信带宽; 本研究报告提议在估计有用信息时使用光谱滚动点(SROP),以综合低频率条件; 计算SROP时,从1-D信号扩大到2-D图像,在图像分类任务中按要求轮流使用; 执行不同特征图中的SROP统计数据,以进行分层有用的信息估计; 安全性检查表明,在模型输入中不同层次的SROP分布可以用来确认支持示范决定的有用组成部分; 此外,在对各种模型结构进行充分培训时,SROP和准确性,即模型有用信息的实地真实性是同步的; 因此,SROP是对有用信息的准确和方便估计; 促进对频率知识进行人工智能的解释。