Evolutionary game theory is a mathematical toolkit to analyse the interactions that an individual agent has in a population and how the composition of strategies in this population evolves over time. While it can provide neat solutions to simple problems, in more complicated situations where assumptions such as infinite population size may be relaxed, deriving analytic solutions can be intractable. In this short paper, we present a game with complex interactions and examine how an agent-based model may be used as a heuristic technique to find evolutionarily stable states.


翻译:进化游戏理论是一个数学工具包,用来分析个体行为主体在人口中的相互作用,以及这种人口的战略构成如何随时间演变。 虽然它可以为简单的问题提供简明的解决方案,但在更复杂的假设情况下,比如无限人口规模的假设可能放松,产生分析性解决方案可能难以解决。 在这份简短的论文中,我们展示了一个复杂的相互作用游戏,并研究如何将基于代理人的模型用作寻找进化稳定状态的惯性技术。

0
下载
关闭预览

相关内容

博弈论(Game theory)有时也称为对策论,或者赛局理论,应用数学的一个分支,目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。
深度学习理论,55页ppt,Preetum Nakkiran (UCSD)
专知会员服务
32+阅读 · 2021年10月27日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月25日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
深度学习理论,55页ppt,Preetum Nakkiran (UCSD)
专知会员服务
32+阅读 · 2021年10月27日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员