In many clustering scenes, data samples' attribute values change over time. For such data, we are often interested in obtaining a partition for each time step and tracking the dynamic change of partitions. Normally, a smooth change is assumed for data to have a temporal smooth nature. Existing algorithms consider the temporal smoothness as an a priori preference and bias the search towards the preferred direction. This a priori manner leads to a risk of converging to an unexpected region because it is not always the case that a reasonable preference can be elicited given the little prior knowledge about the data. To address this issue, this paper proposes a new clustering framework called evolutionary robust clustering over time. One significant innovation of the proposed framework is processing the temporal smoothness in an a posteriori manner, which avoids unexpected convergence that occurs in existing algorithms. Furthermore, the proposed framework automatically tunes the weight of smoothness without data's affinity matrix and predefined parameters, which holds better applicability and scalability. The effectiveness and efficiency of the proposed framework are confirmed by comparing with state-of-the-art algorithms on both synthetic and real datasets.
翻译:在许多组群场中,数据样本的属性值会随时间变化。 对于这些数据,我们往往有兴趣为每个时间步骤获得一个分区,并跟踪分区的动态变化。 通常,假设数据具有时空顺畅性, 假设是平稳的改变, 现有的算法将时间顺畅视为一种先验偏好, 并将搜索偏向于偏好的方向。 这种先验方式会导致与意外区域相融合的风险, 因为由于以前对数据知甚少, 并非总能产生合理的偏好。 为解决这一问题,本文件提议了一个新的集群框架, 称为演进式强力组合。 拟议的框架的一个重要创新是, 以后验方式处理时间顺畅性, 避免在现有算法中出现出乎意料的趋同。 此外, 拟议的框架会自动调整光滑的权重, 没有数据的亲近性矩阵和预先界定的参数, 而这些参数的可更好适用性和可缩度和可缩缩略性。 与合成和真实数据集上的最新算法相比较, 证实了拟议框架的有效性和效率。