Diaspora communities are disproportionately impacted by off-the-radar misinformation and often neglected by mainstream fact-checking efforts, creating a critical need to scale-up efforts of nascent fact-checking initiatives. In this paper we present SynDy, a framework for Synthetic Dynamic Dataset Generation to leverage the capabilities of the largest frontier Large Language Models (LLMs) to train local, specialized language models. To the best of our knowledge, SynDy is the first paper utilizing LLMs to create fine-grained synthetic labels for tasks of direct relevance to misinformation mitigation, namely Claim Matching, Topical Clustering, and Claim Relationship Classification. SynDy utilizes LLMs and social media queries to automatically generate distantly-supervised, topically-focused datasets with synthetic labels on these three tasks, providing essential tools to scale up human-led fact-checking at a fraction of the cost of human-annotated data. Training on SynDy's generated labels shows improvement over a standard baseline and is not significantly worse compared to training on human labels (which may be infeasible to acquire). SynDy is being integrated into Meedan's chatbot tiplines that are used by over 50 organizations, serve over 230K users annually, and automatically distribute human-written fact-checks via messaging apps such as WhatsApp. SynDy will also be integrated into our deployed Co-Insights toolkit, enabling low-resource organizations to launch tiplines for their communities. Finally, we envision SynDy enabling additional fact-checking tools such as matching new misinformation claims to high-quality explainers on common misinformation topics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员