While artificial intelligence (AI) is widely applied in various areas, it is also being used maliciously. It is necessary to study and predict AI-powered attacks to prevent them in advance. Turning neural network models into stegomalware is a malicious use of AI, which utilizes the features of neural network models to hide malware while maintaining the performance of the models. However, the existing methods have a low malware embedding rate and a high impact on the model performance, making it not practical. Therefore, by analyzing the composition of the neural network models, this paper proposes new methods to embed malware in models with high capacity and no service quality degradation. We used 19 malware samples and 10 mainstream models to build 550 malware-embedded models and analyzed the models' performance on ImageNet dataset. A new evaluation method that combines the embedding rate, the model performance impact and the embedding effort is proposed to evaluate the existing methods. This paper also designs a trigger and proposes an application scenario in attack tasks combining EvilModel with WannaCry. This paper further studies the relationship between neural network models' embedding capacity and the model structure, layer and size. With the widespread application of artificial intelligence, utilizing neural networks for attacks is becoming a forwarding trend. We hope this work can provide a reference scenario for the defense of neural network-assisted attacks.


翻译:虽然人工智能(AI)在各个领域广泛应用,但也被恶意地使用。 有必要研究和预测人工智能动力攻击的新方法,以预先防止这些攻击。 将神经网络模型转换成神经软件是使用人工智能的恶意做法, 使用神经网络模型来隐藏恶意软件, 使用神经网络模型的特征来隐藏恶意软件, 并保持模型的性能。 但是, 现有方法的恶意软件嵌入率低, 对模型性能影响大, 因而不切实际。 因此, 本文通过分析神经网络模型的构成, 提出了将恶意软件嵌入能力高、 没有服务质量退化的模型的新方法。 我们用19个恶意软件样本和10个主流模型来建立550个恶意软件嵌入模型的模型模型, 分析模型在图像网络数据集上的模型性能。 一种将嵌入率、 模型性能影响和嵌入努力结合起来的评估现有方法, 本文还设计了一个触发程序, 并提出了将邪恶Model与WinaCry相结合的攻击任务的应用方案。 本文进一步研究了神经网络模型嵌入能力与模型网络之间的关系, 成为了模型攻击的动态模型的参考。 我们利用了模型的模型的模型的模型和动态的模型的模型, 提供了一个可以提供。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
45+阅读 · 2020年10月31日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年6月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月29日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Arxiv
8+阅读 · 2019年5月20日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员