Industrial Internet of Things (IIoT) revolutionizes the future manufacturing facilities by integrating the Internet of Things technologies into industrial settings. With the deployment of massive IIoT devices, it is difficult for the wireless network to support the ubiquitous connections with diverse quality-of-service (QoS) requirements. Although machine learning is regarded as a powerful data-driven tool to optimize wireless network, how to apply machine learning to deal with the massive IIoT problems with unique characteristics remains unsolved. In this paper, we first summarize the QoS requirements of the typical massive non-critical and critical IIoT use cases. We then identify unique characteristics in the massive IIoT scenario, and the corresponding machine learning solutions with its limitations and potential research directions. We further present the existing machine learning solutions for individual layer and cross-layer problems in massive IIoT. Last but not the least, we present a case study of massive access problem based on deep neural network and deep reinforcement learning techniques, respectively, to validate the effectiveness of machine learning in massive IIoT scenario.
翻译:物的工业互联网(IIOT)通过将物的因特网技术纳入工业环境,使未来的制造设施发生革命性的变化。随着大规模IIOT装置的部署,无线网络很难支持各种服务质量要求的无处不在的连接。虽然机器学习被视为优化无线网络的强大数据驱动工具,但如何应用机器学习来解决具有独特特点的大规模IIOT问题仍然有待解决。本文首先总结了典型的大规模非关键和关键的IIOT使用案例的QOS要求。然后我们找出了大规模IIOT情景中的独特特征,以及相应的机器学习解决方案及其局限性和潜在研究方向。我们进一步介绍了大规模IIOT中针对单个层和跨层问题的现有机器学习解决方案。最后但并非最不重要的一点是,我们介绍了基于深层神经网络和深层强化学习技术的大规模接入问题案例研究,分别验证在大规模IIOT情景中机器学习的有效性。