We show that the threshold for the binomial random $3$-partite, $3$-uniform hypergraph $G^{3}((n,n,n),p)$ to contain a Latin square is $\Theta(\log{n}/n)$. We also prove analogous results for Steiner triple systems and proper list edge-colorings of the complete (bipartite) graph with random lists. Our results answer several related questions of Johansson, Luria-Simkin, Casselgren-H\"aggkvist, Simkin, and Kang-Kelly-K\"uhn-Methuku-Osthus.
翻译:我们展示了包含拉丁方块的二进制随机的3美元方块、3美元单式高压$G3}(n,n,n),p)的门槛值是$\Theta(\\log{n}/n) 。我们也证明了施泰纳三重系统和完整的(双向)图中适当的列表边色与随机列表的相似结果。我们的结果回答了约翰森、卢里亚-辛金、卡塞尔格伦-H\"阿格克维斯特、西姆金和姜凯利-K\\\\\\hn-Mathuku-奥斯图斯的一些问题。